Design of a Bovine Low-Density SNP Array Optimized for Imputation
نویسندگان
چکیده
The Illumina BovineLD BeadChip was designed to support imputation to higher density genotypes in dairy and beef breeds by including single-nucleotide polymorphisms (SNPs) that had a high minor allele frequency as well as uniform spacing across the genome except at the ends of the chromosome where densities were increased. The chip also includes SNPs on the Y chromosome and mitochondrial DNA loci that are useful for determining subspecies classification and certain paternal and maternal breed lineages. The total number of SNPs was 6,909. Accuracy of imputation to Illumina BovineSNP50 genotypes using the BovineLD chip was over 97% for most dairy and beef populations. The BovineLD imputations were about 3 percentage points more accurate than those from the Illumina GoldenGate Bovine3K BeadChip across multiple populations. The improvement was greatest when neither parent was genotyped. The minor allele frequencies were similar across taurine beef and dairy breeds as was the proportion of SNPs that were polymorphic. The new BovineLD chip should facilitate low-cost genomic selection in taurine beef and dairy cattle.
منابع مشابه
Imputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method
The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...
متن کاملEstimation of genotype imputation accuracy using reference populations with varying degrees of relationship and marker density panel
Genotype imputation from low-density to high-density (SNP) chips is an important step before applying genomic selection, because denser chips can provide more reliable genomic predictions. In the current research, the accuracy of genotype imputation from low and moderate-density panels (5K and 50K) to high-density panels in the purebred and crossbred populations was assessed. The simulated popu...
متن کاملOptimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications
Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-densi...
متن کاملImputation from SNP chip to sequence: a case study in a Chinese indigenous chicken population
Background Genome-wide association studies and genomic predictions are thought to be optimized by using whole-genome sequence (WGS) data. However, sequencing thousands of individuals of interest is expensive. Imputation from SNP panels to WGS data is an attractive and less expensive approach to obtain WGS data. The aims of this study were to investigate the accuracy of imputation and to provide...
متن کاملEvaluation of developed low-density genotype panels for imputation to higher density in independent dairy and beef cattle populations.
The objective of this study was to develop, using alternative algorithms, low-density SNP genotyping panels (384 to 12,000 SNP), which can be accurately imputed to higher-density panels across independent cattle populations. Single nucleotide polymorphisms were selected based on genomic characteristics (i.e., linkage disequilibrium [LD], minor allele frequency [MAF], and genomic distance) in a ...
متن کامل